Organic Semiconductors
   HOME

TheInfoList



OR:

Organic semiconductors are solids whose building blocks are pi-bonded
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioch ...
s or
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
s made up by
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
and
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
atoms and – at times –
heteroatom In chemistry, a heteroatom () is, strictly, any atom that is not carbon or hydrogen. Organic chemistry In practice, the term is usually used more specifically to indicate that non-carbon atoms have replaced carbon in the backbone of the molecula ...
s such as
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
,
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
. They exist in the form of molecular crystals or amorphous
thin films A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ap ...
. In general, they are
electrical insulator An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and conductors—conduct electric current ...
s, but become
semiconducting A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
when charges are either injected from appropriate
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials de ...
s, upon doping or by
photoexcitation Photoexcitation is the production of an excited state of a quantum system by photon absorption. The excited state originates from the interaction between a photon and the quantum system. Photons carry energy that is determined by the wavelength ...
.


General properties

In molecular crystals the energetic separation between the top of the
valence band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in w ...
and the bottom
conduction band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in w ...
, i.e. the
band gap In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference (in ...
, is typically 2.5–4 eV, while in inorganic
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
s the band gaps are typically 1–2 eV. This implies that they are, in fact, insulators rather than semiconductors in the conventional sense. They become semiconducting only when
charge carrier In physics, a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. The term is used ...
s are either injected from the electrodes or generated by intentional or unintentional doping. Charge carriers can also be generated in the course of
optical excitation Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultravio ...
. It is important to realize, however, that the primary optical excitations are neutral
exciton An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force. It is an electrically neutral quasiparticle that exists in insulators, semiconductors and some liquids. The ...
s with a
Coulomb The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). In the present version of the SI it is equal to the electric charge delivered by a 1 ampere constant current in 1 second and to elementary char ...
-binding energy of typically 0.5–1.0 eV. The reason is that in organic semiconductors their
dielectric constant The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulat ...
s are as low as 3–4. This impedes efficient photogeneration of charge carriers in neat systems in the bulk. Efficient photogeneration can only occur in binary systems due to charge transfer between donor and acceptor moieties. Otherwise neutral excitons decay radiatively to the ground state – thereby emitting photoluminescence – or non-radiatively. The optical
absorption Absorption may refer to: Chemistry and biology * Absorption (biology), digestion **Absorption (small intestine) *Absorption (chemistry), diffusion of particles of gas or liquid into liquid or solid materials *Absorption (skin), a route by which ...
edge of organic semiconductors is typically 1.7–3 eV, equivalent to a spectral range from 700 to 400 nm (which corresponds to the visible spectrum).


History

In 1862,
Henry Letheby Henry Letheby (1816 – 28 March 1876) was an English analytical chemist and public health officer. Early life Letheby was born at Plymouth, England, in 1816, and studied chemistry at the Royal Cornwall Polytechnic Society. In 1837 he commenc ...
obtained a partly conductive material by anodic oxidation of
aniline Aniline is an organic compound with the formula C6 H5 NH2. Consisting of a phenyl group attached to an amino group, aniline is the simplest aromatic amine In organic chemistry, an aromatic amine is an organic compound consisting of an aroma ...
in sulfuric acid. The material was probably
polyaniline Polyaniline (PANI) is a conducting polymer and organic semiconductor of the semi-flexible rod polymer family. The compound has been of interest since the 1980s because of its electrical conductivity and mechanical properties. Polyaniline is one of ...
.The Nobel Prize in Chemistry, 2000
Conductive polymers Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that Electrical conductance, conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The biggest advantage ...
, nobelprize.org.
In the 1950s, researchers discovered that polycyclic aromatic compounds formed semi-conducting
charge-transfer complex In chemistry, a charge-transfer (CT) complex or electron-donor-acceptor complex describes a type of supramolecular assembly of two or more molecules or ions. The assembly consists of two molecules that self-attract through electrostatic forces ...
salts with halogens. In particular, high conductivity of 0.12 S/cm was reported in
perylene Perylene or perilene is a polycyclic aromatic hydrocarbon with the chemical formula C20H12, occurring as a brown solid. It or its derivatives may be carcinogenic, and it is considered to be a hazardous pollutant. In cell membrane cytochemistry, ...
iodine Iodine is a chemical element with the symbol I and atomic number 53. The heaviest of the stable halogens, it exists as a semi-lustrous, non-metallic solid at standard conditions that melts to form a deep violet liquid at , and boils to a vi ...
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
in 1954.Herbert Naarmann "Polymers, Electrically Conducting" in Ullmann's Encyclopedia of Industrial Chemistry 2002 Wiley-VCH, Weinheim. . This finding indicated that organic compounds could carry current. The fact that organic semiconductors are, in principle, insulators but become semiconducting when charge carriers are injected from the electrode(s) was discovered by Kallmann and Pope. They found that a hole current can flow through an
anthracene Anthracene is a solid polycyclic aromatic hydrocarbon (PAH) of formula C14H10, consisting of three fused benzene rings. It is a component of coal tar. Anthracene is used in the Economic production, production of the red dye alizarin and other dyes ...
crystal contacted with a positively biased electrolyte containing iodine that can act as a hole injector. This work was stimulated by the earlier discovery by Akamatu et al. that aromatic hydrocarbons become conductive when blended with molecular iodine because a charge-transfer complex is formed. Since it was readily realized that the crucial parameter that controls injection is the
work function In solid-state physics, the work function (sometimes spelt workfunction) is the minimum thermodynamic work (i.e., energy) needed to remove an electron from a solid to a point in the vacuum immediately outside the solid surface. Here "immediately" m ...
of the electrode, it was straightforward to replace the electrolyte by a solid metallic or semiconducting contact with an appropriate work function. When both electrons and holes are injected from opposite contacts, they can recombine radiatively and emit light (
electroluminescence Electroluminescence (EL) is an optical phenomenon, optical and electrical phenomenon, in which a material emits light in response to the passage of an electric current or to a strong electric field. This is distinct from black body light emissi ...
). It was observed in organic crystals in 1965 by Sano et al. In 1972, researchers found metallic conductivity in the charge-transfer complex TTF-TCNQ.
Superconductivity Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
in charge-transfer complexes was first reported in the
Bechgaard salt In organic chemistry, a Bechgaard salt is any one of a number of organic charge-transfer complexes that exhibit superconductivity at low temperatures. They are named for chemist Klaus Bechgaard, who was one of the first scientists to synthesi ...
(TMTSF)2PF6 in 1980. In 1973 Dr. John McGinness produced the first device incorporating an organic semiconductor. This occurred roughly eight years before the next such device was created. The "
melanin Melanin (; from el, μέλας, melas, black, dark) is a broad term for a group of natural pigments found in most organisms. Eumelanin is produced through a multistage chemical process known as melanogenesis, where the oxidation of the amino ...
( polyacetylenes) bistable switch" currently is part of the chips collection of the
Smithsonian Institution The Smithsonian Institution ( ), or simply the Smithsonian, is a group of museums and education and research centers, the largest such complex in the world, created by the U.S. government "for the increase and diffusion of knowledge". Founded ...
. In 1977, Shirakawa ''et al.'' reported high conductivity in oxidized and iodine-doped polyacetylene. They received the 2000 Nobel prize in Chemistry for "The discovery and development of
conductive polymers Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that Electrical conductance, conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The biggest advantage ...
". Similarly, highly conductive polypyrrole was rediscovered in 1979. Rigid-backbone organic semiconductors are now used as active elements in
optoelectronic Optoelectronics (or optronics) is the study and application of electronic devices and systems that find, detect and control light, usually considered a sub-field of photonics. In this context, ''light'' often includes invisible forms of radiatio ...
devices such as
organic light-emitting diode An organic light-emitting diode (OLED or organic LED), also known as organic electroluminescent (organic EL) diode, is a light-emitting diode (LED) in which the emissive electroluminescent layer is a film of organic compound that emits light i ...
s (OLED),
organic solar cell An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport t ...
s,
organic field-effect transistor An organic field-effect transistor (OFET) is a field-effect transistor using an organic semiconductor in its channel. OFETs can be prepared either by vacuum evaporation of small molecules, by solution-casting of polymers or small molecules, or ...
s (OFET), electrochemical transistors and recently in biosensing applications. Organic semiconductors have many advantages, such as easy fabrication, mechanical flexibility, and low cost. The discovery by Kallman and Pope paved the way for applying organic solids as active elements in semiconducting electronic devices, such as organic light-emitting diodes (OLEDs) that rely on the recombination of electrons and hole injected from "ohmic" electrodes, i.e. electrodes with unlimited supply of charge carriers. The next major step towards the technological exploitation of the phenomenon of electron and hole injection into a non-crystalline organic semiconductor was the work by Tang and Van Slyke. They showed that efficient electroluminescence can be generated in a vapor-deposited thin amorphous bilayer of an aromatic diamine (TAPC) and Alq3 sandwiched between an indium-tin-oxide (ITO) anode and an Mg:Ag cathode. Another milestone towards the development of organic light-emitting diodes (OLEDs) was the recognition that also conjugated polymers can be used as active materials. The efficiency of OLEDs was greatly improved when realizing that phosphorescent states ( triplet excitons) may be used for emission when doping an organic semiconductor matrix with a phosphorescent dye, such as complexes of iridium with strong spin–orbit coupling. Work on conductivity of anthracene crystals contacted with an electrolyte showed that optically excited dye molecules adsorbed at the surface of the crystal inject charge carriers. The underlying phenomenon is called sensitized photoconductivity. It occurs when photo-exciting a dye molecule with appropriate oxidation/reduction potential adsorbed at the surface or incorporated in the bulk. This effect revolutionized electrophotography, which is the technological basis of today's office copying machines. It is also the basis of
organic solar cell An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport t ...
s (OSCs), in which the active element is an electron donor, and an electron acceptor material is combined in a bilayer or a bulk
heterojunction A heterojunction is an interface between two layers or regions of dissimilar semiconductors. These semiconducting materials have unequal band gaps as opposed to a homojunction. It is often advantageous to engineer the electronic energy bands in many ...
. Doping with strong electron donor or acceptors can render organic solids conductive even in the absence of light. Examples are doped
polyacetylene Polyacetylene (IUPAC name: polyethyne) usually refers to an organic polymer with the repeating unit . The name refers to its conceptual construction from polymerization of acetylene to give a chain with repeating olefin groups. This compound i ...
and doped light-emitting diodes.
Today organic semiconductors are used as active elements in
organic light-emitting diode An organic light-emitting diode (OLED or organic LED), also known as organic electroluminescent (organic EL) diode, is a light-emitting diode (LED) in which the emissive electroluminescent layer is a film of organic compound that emits light i ...
s (OLEDs),
organic solar cell An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport t ...
s (OSCs) and
organic field-effect transistor An organic field-effect transistor (OFET) is a field-effect transistor using an organic semiconductor in its channel. OFETs can be prepared either by vacuum evaporation of small molecules, by solution-casting of polymers or small molecules, or ...
s (OFETs).


Materials


Amorphous molecular films

Amorphous molecular films are produced by evaporation or spin-coating. They have been investigated for device applications such as OLEDs, OFETs, and OSCs. Illustrative materials are
tris(8-hydroxyquinolinato)aluminium Tris(8-hydroxyquinolinato)aluminium is the chemical compound with the formula Al(C9H6NO)3. Widely abbreviated Alq3, it is a coordination complex wherein aluminium is bonded in a bidentate manner to the conjugate base of three 8-hydroxyquinoline l ...
, C60, phenyl-C61-butyric acid methyl ester (PCBM),
pentacene Pentacene () is a polycyclic aromatic hydrocarbon consisting of five linearly-fused benzene () rings. This highly conjugated compound is an organic semiconductor. The compound generates excitons upon absorption of ultra-violet ( UV) or visible ...
,
carbazole Carbazole is an aromatic heterocyclic organic compound. It has a tricyclic structure, consisting of two six-membered benzene rings fused on either side of a five-membered nitrogen-containing ring. The compound's structure is based on the indole str ...
s, and
phthalocyanine Phthalocyanine () is a large, aromatic, macrocyclic, organic compound with the formula and is of theoretical or specialized interest in chemical dyes and photoelectricity. It is composed of four isoindole units linked by a ring of nitrogen atom ...
.


Molecularly doped polymers

Molecularly doped polymers are prepared by spreading a film of an electrically inert polymer, e.g. polycarbonate, doped with typically 30% of charge transporting molecules, on a base electrode. Typical materials are the triphenylenes. They have been investigated for use as photoreceptors in electrophotography. This requires films have a thickness of several micrometers that can be prepared using the doctor-blade technique.


Molecular crystals

In the early days of fundamental research into organic semiconductors the prototypical materials were free-standing single crystals of the acene family, e.g. anthracene and tetracene. The advantage of employing molecular crystals instead of amorphous film is that their charge carrier mobilities are much larger. This is of particular advantage for OFET applications. Examples are thin films of crystalline rubrene prepared by hot wall epitaxy.


Neat polymer films

They are usually processed from solution employing variable deposition techniques including simple spin-coating, ink-jet deposition or industrial reel-to-reel coating which allows preparing thin films on a flexible substrate. The materials of choice are conjugated polymers such as poly-thiophene, poly-phenylenevinylene, and copolymers of alternating donor and acceptor units such as members of the poly(carbazole-dithiophene-benzothiadiazole (PCDTBT) family. For solar cell applications they can be blended with C60 or PCBM as electron acceptors.


Aromatic short peptides self-assemblies

Aromatic short peptides self-assemblies are a kind of promising candidate for bioinspired and durable nanoscale semiconductors. The highly ordered and directional intermolecular π-π interactions and hydrogen-bonding network allow the formation of quantum confined structures within the peptide self-assemblies, thus decreasing the band gaps of the superstructures into semiconductor regions. As a result of the diverse architectures and ease of modification of peptide self-assemblies, their semiconductivity can be readily tuned, doped, and functionalized. Therefore, this family of electroactive supramolecular materials may bridge the gap between the inorganic semiconductor world and biological systems.


Characterization

To design and characterize organic semiconductors used for optoelectronic applications one should first measure the absorption and photoluminescence spectra using commercial instrumentation. However, in order to find out if a material acts as an electron donor or acceptor one has to determine the energy levels for hole and electron transport. The easiest way of doing this, is to employ cyclic voltammetry. However, one has to take into account that using this technique the experimentally determined oxidation and reduction potential are lower bounds because in voltammetry the radical cations and anions are in a polar fluid solution and are, thus, solvated. Such a solvation effect is absent in a solid specimen. The relevant technique to energetically locate the hole transporting states in a solid sample is UV-photoemission spectroscopy. The equivalent technique for electron states is inverse photoemission. There are several techniques to measure the mobility of charge carriers. The traditional technique is the so-called
time of flight Time of flight (ToF) is the measurement of the time taken by an object, particle or wave (be it acoustic, electromagnetic, etc.) to travel a distance through a medium. This information can then be used to measure velocity or path length, or as a w ...
(TOF) method. Since this technique requires relatively thick samples it is not applicable to thin films. Alternatively, one can extract the charge carrier mobility from the current flowing in a field effect transistor as a function of both the source-drain and the gate voltage. One should be aware, though, that the FET-mobility is significantly larger than the TOF mobility because of the charge carrier concentration in the transport channel of a FET (see below). Other ways to determine the charge carrier mobility involves measuring space charge limited current (SCLC) flow and "carrier extraction by linearly increasing voltage (CELIV). In order to characterize the morphology of semiconductor films, one can apply
atomic force microscopy Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the op ...
(AFM) scanning electron microscopy (SEM) and
Grazing-incidence small-angle scattering Grazing-incidence small-angle scattering (GISAS) is a scattering technique used to study nanostructured surfaces and thin films. The scattered probe is either photons (grazing-incidence small-angle X-ray scattering, GISAXS) or neutrons (grazing-inci ...
(GISAS).


Charge transport

In contrast to organic crystals investigated in the 1960-70s, organic semiconductors that are nowadays used as active media in optoelectronic devices are usually more or less disordered. Combined with the fact that the structural building blocks are held together by comparatively weak van der Waals forces this precludes charge transport in delocalized valence and conduction bands. Instead, charge carriers are localized at molecular entities, e.g. oligomers or segments of a conjugated polymer chain and move by incoherent hopping among adjacent sites with statistically variable energies. Quite often the site energies feature a Gaussian distribution. Also the hopping distances can vary statistically (positional disorder). A consequence of the energetic broadening of the density of states (DOS) distribution is that charge motion is both temperature and field dependent and the charge carrier mobility can be several orders of magnitude lower than in an equivalent crystalline system. This disorder effect on charge carrier motion is diminished in organic field-effect transistors because current flow is confined in a thin layer. Therefore, the tail states of the DOS distribution are already filled so that the
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules pe ...
for charge carrier hopping is diminished. For this reason the charge carrier mobility inferred from FET experiments is always higher than that determined from TOF experiments. In organic semiconductors charge carriers couple to vibrational modes and are referred to as polarons. Therefore, the activation energy for hopping motion contains an additional term due to structural site relaxation upon charging a molecular entity. It turns out, however, that usually the disorder contribution to the temperature dependence of the mobility dominates over the polaronic contribution.


See also

*
Conductive polymer Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The biggest advantage of conductive polymer ...
* Dinaphthylene dioxide *
Molecular electronics Molecular electronics is the study and application of molecular building blocks for the fabrication of electronic components. It is an interdisciplinary area that spans physics, chemistry, and materials science. The unifying feature is use of mo ...
*
Organic electronics Organic electronics is a field of materials science concerning the design, synthesis, characterization, and application of organic molecules or polymers that show desirable electronic properties such as conductivity. Unlike conventional inorga ...
* Organic field-effect transistor (OFET) *
Organic laser Organic lasers use an organic (carbon based) material as the gain medium. The first organic laser was the liquid dye laser. These lasers use laser dye solutions as their gain media. Organic lasers are inherently tunable and when configured as o ...
* Organic light-emitting diode (OLED) *
Organic photonics Organic photonics includes the generation, emission, transmission, modulation, signal processing, switching, amplification, and detection/sensing of light, using organic optical materials. Fields within organic photonics include the liquid org ...
* Organic photovoltaic cell (OPVC)


References


Further reading

*''Electronic Processes in Organic Semiconductors : An Introduction'' by Anna Köhler and Heinz Bässler, Wiley – VCH, 2015 *''Electronic processes in organic crystals and polymers'' by M. Pope and C.E.Swenberg, Oxford Science Publications, 2nd edition, 1999. *''Organic photoreceptors for Xerography''by P.M.Borsenberger and D.S.Weiss, Marcel Dekker, New York, 1998.


External links

* {{DEFAULTSORT:Organic Semiconductor Conductive polymers Molecular electronics Semiconductor material types